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Abstract. For any two unitarily related Hamiltonians H and H' we point out the existence 
of the inequality (H'- 3 0  and present applications to the density distribution of 
interacting mobile particles embedded in a periodic medium. Other applications (to e.g. 
spin systems) are also discussed. 

1. Inequalities 

For any two Hamiltonians H and H'  we have the inequality (see e.g. Feynman 1972) 

F ' + ( H ' -  H ) H  2 F (1) 

where the free energies F and F' are defined respectively by exp( - P F )  = Tr exp( - P H )  
and exp( - P F ' )  = Tr exp( - p H ' )  and p = 1 /  k, T is the inverse temperature. The thermal 
average for an arbitrary operator B is given by 

( B ) H  Tr B exp[P( F - H ) ] .  ( 2 )  

(3) 

In particular, when H and H '  are unitarily related, i.e. 
H I  = e i A H  e-lA 

with A=A' being Hermitian, the two operators H and H '  have identical energy 
spectrum and hence F = F'.  Then equation ( 1 )  implies 

(H'- H)H 3 0 .  (4) 

This inequality can be applied straightforwardly to several systems. For example, for 
interacting mobile particles embedded in 
by 

H = Ho + dxp*(x) V(x) I 
where Ho is that part of the Hamiltonian 

a periodic medium-the Hamiltonian is given 

( 5 )  

which is invariant under spatial translations 
and rotations. p*(x)  and V(x) are the density operators and the single particle potential 
simulating the periodic medium, respectively. For inequality (1) and therefore (4) to 
be applicable, it is necessary to impose periodic boundary conditions on the wavefunc- 
tions, which in this way become square integrable functions. 
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2. Density of inhomogeneous liquid 

The Hamiltonian ( 5 )  applies to several systems of recent interest, e.g. superionic 
conductors (Dieterich et al 1981), intercalation system (Bunde and Dieterich 1981a) 
and submonolayer films on periodic substrates (Nielsen et a1 1978). In a superionic 
conductor, for example, Ha describes the interaction between the mobile ions. The 
cage ions are located at regular lattice sites and represent the periodic medium, which 
gives rise to the periodic potential. A further example is a non-uniform interacting 
electron system. 

Due to the different characteristic lengths involved in equation ( 5 ) ,  e.g. interaction 
length and period of V ( x ) ,  equation ( 5 )  has been used to study commensurability 
effects (Guyer and Miller 1979). In general, the static and dynamic properties of 
equation ( 5 )  cannot be obtained exactly and rigorous results, even for the density 
distribution p ( x ) ,  are absent. For an exception, see Guyer and Miller (1979). Meaning- 
ful approximations, e.g. inhomogeneous Percus-Yevick equations coupled to the 
Yvon-Born-Green hierarchy (see Bunde and Dieterich 1981b), can only be treated 
with a considerable amount of numerical work. 

In contrast, simple rigorous results for the density distribution of the complicated 
system can be obtained easily from equations (4) and (3) ,  as we will show immediately. 
Putting A = b * P  in equation (3) where b is an arbitrary displacement and P is the 
momentum operator we obtain from equations (4) and ( 5 )  after dividing by the volume 
V, and taking the limit V , + w  

1 
f ( b )  = E  1 dx[p(x - b )  - p ( x ) ] V ( x )  3 0 ( 6 )  

n 

where R denotes the elementary cell defined by the periodicity of the single particle 
potential. In deriving equation ( 6 )  we have used [Ha, P]=O and 
exp(ib. P)p^(x)  exp(-ib P )  = p^(x - b ) .  We note that the inequality (6) holds for all 
temperatures, interactions, concentrations of the mobile particles and displacements 
b. It generalises an inequality which has been derived earlier by Theophilou (private 
communication) for the inhomogeneous electron system at zero temperature. 

It is convenient to introduce the Fourier expansions 

and 

where G denotes the reciprocal lattice vectors associated with the periodicity of V ( x ) .  
Since V ( x )  and p ( x )  are real, VG and pG must satisfy the relations V-G = V*, and 
p-G = p*,. Inserting equations (7) and (8) into equation (6) we obtain 

(9) C G pGV*,[l -exp(-iG. b ) ] s O .  

When V ( x )  satisfies inversion symmetry, equation (9) yields 

pcVG sin2(fC * b )  s 0. 
G 

Now we take b = aai,, where CY is an arbitrary constant, a,,, is one of the three lattice 
vectors and write G in terms of the basic reciprocal lattice vectors G,,o. Using the 
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reciprocity relation q 0  = 2 7 4  we obtain from equation (10) for a = 4  

f P ( 2 n  + I  )G,.o v ( 2 n  + I  )G,.o 0, i =  1,2,3 
n = O  

while in the limit a + 0 we find 

f nZPnG,,, VnG,., 0, i = 1,2,3.  (12) 
n = l  

In deriving equation (12) we have assumed that V ( x )  can be expressed by a finite 
number of Fourier coefficients VG. The relations (9)-( 12) represent general non-trivial 
inequalities for the density distribution. 

3. Specific examples 

To be specific, let us consider the case of a classical liquid which is embedded in a 
periodic potential. The total energy is written as 

where r, denotes the instantaneous position of the kth particle. V(') is the pair potential 
between two particles and V is the external potential. Our bounds (11) and (12) do 
not depend explicitly on the form of V'2) ,  but depend strongly on the shape of the 
external potential. For example, for a simple one-dimensional sinusoidal potential 
where V ( x )  = f V I  cos( GlSox) we have VG = K G  = V,SG,G,.o and we obtain from equation 
( 1  1) 

PG,,oVG,.o~ 0. (14) 

Thus the density fluctuation Fourier coefficient has the opposite sign to the correspond- 
ing Fourier coefficient of the external potential. 

For a one-dimensional potential with two non-equivalent minima described by 

V ( x )  = $ V I  COS(G, ,~X)  + f V 2  c 0 s ( 2 G ~ , ~ x )  

P G , , V G ~ , ~ ~ O  (16) 

P2Gl., V2G,.o alpGI,, VG,.,I. (17) 

(15) 

we have VG = V-G = V,SG,Gl,o + V2SG,2Gl,o. Then we find from equations ( 1  1) and (12) 

Generalisations to more complicated potentials are straightforward. 
For non-interacting particles p ( x )  can be calculated exactly by three-dimensional 

numerical integration. Including the interaction, however, p ( x )  has only been calcu- 
lated exactly for the particular case of harmonically bound particles in a sinusoidal 
potential (Frenkel-Kontorova model), and even for this case a large amount of 
numerical work is needed. In general, p ( x )  cannot be calculated rigorously and 
analytical solutions do not exist. Therefore our bounds offer a simple non-trivial check 
of the approximation scheme used to calculate p ( x ) .  In addition, since many numerical 
procedures involve iteration schemes, the inequalities may be used to check the 
convergency of the different iteration schemes. 
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4. Discussion 

Note that the Hermitian operator A in equation (3) is arbitrary. By choosing a new 
A we get new inequalities from equation (4). For example, when A = b -  L with L 
being the angular momentum operator, we have from equations ( 3 )  to ( 5 )  

dxp(x)[ V(X + b X X )  - V(X)] 2 0. (18) i 
We now consider the spin Hamiltonian 

H =  D C ( s f ) 2 + E  c[(s:)2-(sr)2]-cJijsi.sj 
I I ij 

which has been used (Cisneros Ramos and Sivardiere 1976) in describing ferromagnets 
HoFeO,, TmCrO,, etc. Under a rotation of 7r/2 around the z axis, [(S:)2-(ST)2] 
changes sign while the remaining terms in equation (19) are unchanged. Therefore, 

(20) 

When S = 1, the second term in equation (19) may be interpreted as the flipping 
between the doublets in the three-level system. Equation (20) then says that this 
flipping always lowers the energy of the system and makes it more stable. 

It should be emphasised that the only two conditions for equation (4) to hold are: 
(i)  Both H and H’ are Hermitian; ( i i )  H and H’ have identical spectrum. Unitary 
transformations (and maybe other more general relations) between Hamiltonians H 
and H’ are special cases that fulfil these two conditions. Since equation (1 )  is valid 
for both quantum and classical systems (see e.g. Falk 1970) so must equation (4) be. 
Also, we note that equation (4) is valid for an arbitrary system, whether it is one-particle 
or many-particle, fermions or bosons. 

(H’- H) = - 2 E  c ( ( S : ) 2  - (SY)’)a 0. 
I 
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